173 - The number of Orders with Fourteen Elements

N. Lygeros

Abstract. The number of non-isomorphic posets on 14 elements is P_14 = 1’338’193’459’771. This extends our previous result P_13 = 33’823’827’452 which constituted the greatest known value. A table enumerates the posets according to their number of relations.

Mathematics Subjects Classifications (1991). Primary 06-04; secondary 06A07, 05C30.

Key words. Unlabeled, partial orders, computer, enumeration.

Introduction

Here we consider only pariwise non-isomorphic posets and note P_n (resp. P_n,r) the number of those having n elements (and r relations).

0 <= n <= 6, P_n = 1; 1; 2; 5; 16; 63; 318


P_7 = 2’045 (1972)

J. Wright
P_8 = 16’999 (1977)

S. K. Das
P_9 = 183’231 (1984)

R. H. Mohring
P_10 = 2’567’284 (1990)

J. C. Culberson, G. J. E. Rawlins
P_11 = 46’749’427 (1990)

J. C. Culberson, G. J. E. Rawlins
P_12 = 1’104’891’746 (1991)

C. Chaunier, N. Lygeros
P_13 = 33’823’827’452 (1992)

C. Chaunier, N. Lygeros
P_14 = 1’338’193’159’771 (2000)

N. Lygeros, P. Zimmermann

Results

The last value extends [1], follows [6], [7] – origins of this work – and [2], [3] – where our initial algorithm is describred. The following table gives the precise results.

r P_n,r r P_n,r r P_n,r
0 1 30 15’093’556’839 60 3’461’298’437
1 1 31 20’075’844’431 61 2’493’875’402
2 3 32 25’908’418’088 62 1’770’675’277
3 7 33 32’478’923’331 63 1’239’039’207
4 19 34 39’592’931’224 64 854’569’812
5 47 35 46’979’502’004 65 560’970’065
6 133 36 54’307’727’007 66 389’321’463
7 355 37 61’211’924’728 67 257’162’269
8 1’020 38 67’323’642’504 68 167’425’100
9 2’921 39 72’305’442’194 69 107’425’128
10 8’632 40 75’882’802’702 70 67’918’114
11 25’486 41 77’869’195’951 71 42’302’121
12 75’366 42 78’181’684’187 72 25’947’267
13 217’990 43 76’844’939’859 73 15’667’333
14 613’701 44 73’984’081’629 74 9’307’819
15 1’659’796 45 69’807’866’652 75 5’436’986
16 4’290’662 46 64’585’100’397 76 3’120’222
17 10’541’968 47 58’617’924’003 77 1’757’459
18 24’574’810 48 52’215’061’893 78 970’342
19 54’282’974 49 45’668’403’312 79 524’242
20 113’695’015 50 39’234’427’091 80 276’596
21 226’043’606 51 33’122’134’980 81 142’020
22 427’434’085 52 27’486’947’185 82 70’684
23 770’364’708 53 22’430’638’497 83 33’907
24 1’326’574’992 54 18’005’406’984 84 15’527
25 2’187’816’296 55 14’221’396’017 85 6’724
26 3’463’953’205 56 11’055’548’408 86 2’701
27 5’276’878’418 57 8’461’181’255 87 978
28 7’750’426’625 58 6’376’703’312 88 309
29 10’995’675’430 59 4’733’381’232 89 78
90 13
91 1

More information can be found on the Web at:
https://lygeros.org/poset/

These results confirm R. Fraïssé’s conjecture on unimodality. The values for 0 <= r <= 6 agree with J. C. Culberson and G. J. E. Rawlin's [4], and the values for 78 <= r <= 91 are confirmed by M. Erné's formulae.

Acknowledgement

This result would not have been possible without the help of Robert Erra, Bernard Landreau, John Lygeros, Jon Kierkegaard, Ilias Kotsireas, Joël Marchand, Michel Mizony, Thomas Papanikolaou, and Robert Piche.

References

1. C. Chaunier and N. Lygeros (1992) The number of orders with thirteen elements. Order, vol. 9, 203-204.
2. C. Chaunier and N. Lygeros (1992) Progrès dans l’énumération des poset, C. R. Acad. Sci. Paris, t. 314, série I, 691-694.
3. C. Chaunier and N. Lygeros (1994) Le nombre de posets à isomorphie près ayant 12 éléments. Theoretical Computer Science, n. 123, 89-94.
4. J. C. Culberson and G. J. E. Rawlins (1991) New results from an algorithm for counting posets, Order, vol. 7, 361-374.
5. M. Erné (1992) The number of partially ordered sets with more points than unrelated pairs, Discrete Math. 105, n. 1-3, 49-60.
6. R. Fraïssé and N. Lygeros (1991) Petits posets : dénombrement, représentabilité par cercles et compenseurs. C. R. Acad. Sci. Paris, t. 313, série I, 417-420.
7. N. Lygeros (1991) Calculs exhaustifs sur les posets d’au plus 7 éléments, Singularité, vol. 2, n. 4, 10-24.